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In this work, topological data analysis is used to identify the onset of severe slug flow in offshore
petroleum production systems. Severe slugging is a multiphase flow regime known to be very
inefficient and potentially harmful to process equipment and it is characterized by large oscillations
in the production fluid pressure. Time series from pressure sensors in subsea oil wells are processed by
means of Takens embedding to produce point clouds of data. Embedded sensor data is then analyzed
using persistent homology to obtain topological indicators capable of revealing the occurrence of
severe slugging in a condition-based monitoring approach. A large data set of well events consisting
of both real and simulated data is used to demonstrate the possibility of automatizing severe slugging
detection from live data via topological data analysis. Methods based on persistence diagrams are
shown to accurately identify severe slugging and to classify different flow regimes from pressure
signals of producing wells with supervised machine learning.

I. INTRODUCTION

Multiphase flow is a complex phenomenon in chem-
ical engineering and it is still very challenging to fully
understand. In particular, gas-liquid multiphase flow is
ubiquitous in the chemical industry e.g. in heat exchang-
ers or in process industries, where fluids are transported
through piping systems to process facilities. In petroleum
engineering mutliphase flow is ubiquitous [1]. Gas wells
may also produce condensate and water while oil wells
may also produce gas, water and suspended solids. Gas
can also be re-injected downhole to reduce the fluid den-
sity and viscosity, increasing production. In certain pro-
cess conditions, a two-phase flow can transition to more
complex patterns where large bubbles form in the liquid
phase [2]. As the flow velocity increases, bubbles can
then coalesce into trains of large bullet-shape gas pock-
ets (Taylor bubbles) that occupy almost the entire piping
cross sectional area [3], separated by slugs of liquid. This
flow regime is known as hydrodynamic slugging or slug
flow [4, 5].
Differently from slug flow, severe slugging has a long liq-
uid slug body that might be longer than the riser length
[6]. Severe slugging in offshore petroleum production sys-
tems can be triggered at locations where the pipe incli-
nation changes from a downward angle, such as in the
pipeline, followed by an upward angle or a vertical pipe,
such as in risers. These are pipes connecting subsea wells
to a topside processing facility and have a J-shape due to
seabed topography. The phenomenon is triggered when
the liquid produced by the wells accumulates at the bot-
tom of the riser, blocking the gas passage and compress-
ing the incoming gas at the pipeline (slug formation). As
the liquid accumulates, its level increases to reach the top
of the riser while the gas pressure reaches a maximum
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and there is only liquid flowing in the riser (slug pro-
duction). The liquid accumulation front in the pipeline
is then pushed ahead until it reaches the bottom of the
riser, leading to the gas penetration into the riser. The
fluid column becomes lighter, decreasing the pressure and
then increasing the gas flow. When gas reaches the top
of the riser its passage is then free (blow down stage),
causing a violent expulsion and a rapid decompression
that brings the process to slug formation again (Figure
1, [7, 8]).
Different types of severe slugging were defined depend-
ing on the flow conditions in the pipeline-riser system
[9]: (SS1) Severe slugging 1 is characterized by a liq-
uid slug length greater to or equal to one riser length,
(SS2) Severe slugging 2 has a liquid slug length shorter
than one riser length, and (SS3) Severe slugging 3 occurs
when there is continuous gas penetration at the bottom
of the riser, leading to cyclic variations of smaller periods
and amplitudes when compared to SS1 and SS2.
Severe slugging leads to alternating long liquid slugs fol-
lowed by high gas rates, causing poor phase separation,
loss of production and large vibrations which may induce
fatigue load on the processing facilities [10]. Given such
detrimental effects on production and operation, a great
deal of research was dedicated to predicting its occur-
rence. Schmidt et al. [11, 12] performed an experimental
and modeling study of the phenomenon and proposed
a prediction criterion based on the flow pattern in the
pipeline and flow stability in the riser. Bøe [13] and Pots
et al. [14] proposed a stability criterion based on a force
balance between the hydrostatic pressure in the riser and
the gas pressure in the pipeline. The Taitel [15] crite-
rion is instead based on a similar force balance with the
inclusion of a gas perturbation stability criterion. The
prediction of the severe slugging phenomenon was also
explored by using simplified transient multiphase flow
models, such as the ones proposed by Fabre et al. [16],
Sarica and Shoham [17], Baliño et al. [7], and Nemoto
and Baliño [18].
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FIG. 1. Top: J-riser connecting an offshore floating topside
installation to a subsea well. Image courtesy of Aker Solutions
AS. Bottom: mechanism of slug formation in vertical risers. a:
blockage at the riser base and slug formation, b: slug growth
and movement towards the separator, c: blowout and fast
liquid production; d: gas production and liquid fallback.

The literature reports different techniques to mitigate se-
vere slugging such as (a) back-pressure increase, repre-
sented by an increase in the separator pressure, as re-
ported by Yocum [8], Schmidt [12], and Baliño [7], (b)
choking, i.e. reducing the choke valve opening, as re-
ported by Jansen [19], Yocum [8], and Schmidt [11], (c)
gas lift at the base of the riser, as reported by Jansen
[19] and Schmidt [12], and (d) subsea separation, forcing
gas and liquid to be transported in separate flowlines,
as reported by Song and Kouba [20]. More recently,
different authors (Pedersen [5], Havre and Dalsmo [21],
Pedersen [22]) have proposed the use of control tech-
niques, such as active feedback control of the topside
choke valve, to avoid flow instabilities while maintaining
desirable oil production. Di Meglio [23] proposes differ-
ent control strategies to attenuate slugging, classifying

them as model-free strategies, based on the implemen-
tation of, for instance, PI-controllers using process vari-
ables, and model-based strategies, which utilizes simpli-
fied flow models in association with control techniques.
Different simplified models were proposed for vertical ris-
ers, such as the models from Storkaas and Skogestad [24],
Tuvnes [25], Kaasa [26], Silva and Nydal [27] and Jahan-
shahi and Skogestad [28, 29], and for S-shaped risers,
such as the model proposed by Nemoto [30].
In this work we apply topological data analysis (TDA),
to identify and characterize instabilities in the flow of off-
shore oil and gas wells. This approach is entirely based
on signal analysis from well’s pressure sensor data and
does not require information on the industrial asset (pipe
height, shape, etc.) fluid characteristics nor thermody-
namics.
Recently, TDA has been successfully used in physics [31–
33], biosciences [34], astronomy [35], and chemical engi-
neering [36], as a powerful tool for detecting emerging
patterns in data and physical systems. This method is
based on an embedding of process time series and on their
analysis by means of persistent homology, a branch of al-
gebraic topology. Time series are transformed into point
clouds in a high-dimensional space where the informa-
tion of the physical process is encoded onto their shape
and extracted via persistent homology. We will show
how this approach can be used for condition monitoring
of well events by detecting the signatures of production
instabilities as they appear in both real and simulated off-
shore sensors’ data and for their automatic classification
via simple and explainable machine learning methods. In
this work we are going to focus on presenting an intuitive
picture of the methodology without focusing on formal-
ism or mathematical details and rather focusing on its
applications. A more formal and comprehensive intro-
duction to the subject can be found in references [36]
and [37, 38].

II. THEORETICAL METHODS

A. Time series embedding

The evolution of a physical dynamical system, such
as that of a multiphase fluid, depends on a large set of
parameters (fluid characteristics, reservoir and gas lift
pressures, choke valve openings, etc.) and can be fully
described by a multivariate time series x(t) ∈ RN , i.e.
a trajectory in an N -dimensional phase space. Here we
assume that the topology of the phase space contains all
the information of the physical system and, by having
access to that, one could forecast the dynamics of the
physical system. For a deterministic dynamic system,
by knowing all the system parameters and their deriva-
tives their evolution could be computed exactly. Unfor-
tunately, most of these N parameters are hidden or un-
known in practical situations as meters and sensors in the
field measure only a few process indicators (temperature,
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pressures, flow rates), each effectively mapping x(t) onto
each sensor. The sensors’ time series can be considered
as sampling of the phase space and its analysis is then
a proxy to access the space’s topology i.e. its physical
properties.
Here we assume that the trajectory in phase space is
evolving smoothly in time and that it is confined to
a manifold M ⊂ RN known as an attractor, where
dim(M) < N . The trajectory’s evolution can then be
written in terms of finite time intervals τ by a flow func-
tion ϕ at a given time t, ϕ : M× R → M such as:

x(t+ τ) = ϕ(x(t), τ) = ϕτ (x(t)) (1)

and for k ∈ N, x(t+ kτ) = ϕk
τ (x(t)).

The measurement process of the physical system, can
be represented by the measurement function Φ : RN →
R applied at regular intervals τ to generate the sensor
time series {x(ti)}i∈N = {Φ(x(i · τ))}i. In order to study
the full dynamical system is necessary to “reconstruct”
the trajectory x(t) given only the measured time series
{x(ti)}. This can be achieved by a time-delay embedding:

F (x(t)) =


x(ti)

x(ti+1)
...

x(ti+d)

 =


Φ(x(iτ))

Φ(x((i+ 1)τ))
...

Φ(x((i+ d)τ)

 =

=


Φ(x(iτ))

Φ(ϕ1
τ (x(iτ)))
...

Φ(ϕd
τ (x(iτ)))


(2)

Here, F (x(t)) is a delay coordinate map from M to the
so-called reconstruction space Rd+1 build by stacking
repeated measurements of the system. Takens theorem
[39] sets the sufficient conditions on the spaces and the
measurement function for which F (x(t)) is diffeomorphic
to M, i.e. a trajectory reconstruction space preserves
the topology of the dynamical system x(t) ∈ M.
In practice, the embedding of the sensor data is done
by choosing the embedding dimension d and the time
delay τ with which to sample the time series d times.
The product dτ can be seen as a window in time where
each time-delayed sampled value in the window becomes
the element of a vector, {x(t), x(t + τ), . . . , x(t + dτ)}.
By sliding this window forward in time the procedure
generates a series of vectors and therefore a cloud of
points following a trajectory in Rd+1.
The shape of the point cloud depends on the sliding

window size and, in turn, the embedding dimension d
and the time delay τ have to be chosen correctly in order
to guarantee a faithful embedding of the time series
and avoid non-physical situations such as trajectory
crossings. In this study, the optimal time delay was
chosen by determining the first minimum of the mutual
information function which is a measure of how much in-
formation consecutive points share [40]. The embedding

FIG. 2. Top: quasi-periodic signal undergoing Takens
embedding in the window shaded in red in the interval
(t0, td=t0+dτ) to produce one point F (x(t0)) in a d + 1-
dimensional space. The embedding relies on sampling d + 1
points spaced by τ time. Bottom: the point cloud obtained by
sampling repeatedly the signal by sliding the sampling win-
dow ahead of one time step.

dimension was computed instead via the false nearest
neighbor algorithm of Abarbanel, Kennel and Brown [41].

B. Simplicial Complexes and Filtrations

For studying properties of the shape of a point cloud
of data one needs a set of tools for extracting topologi-
cal invariants from the shape. These tools are defined in
the discipline of algebraic topology, which defines a set of
procedures to translate geometrical properties of a shape
(boundaries, holes, etc.) into linear algebra. Topology,
per se does not apply to sets of points, rather to contin-
uous shapes. Considering the point cloud obtained from
the time series embedding as a discrete sampling of an
underlying continuous topological space, it is then possi-
ble to build a combinatorial representation of such space
based on simplicial complexes.
Connected points in space may form simplices: a k-
simplex is defined as the convex hull of the set Sk =
{x1, x2, ..., xk+1} of independent points. For example, a
single point in space is a 0-simplex, two points connected
to each other make a 1-simplex, three connected points
forming a filled triangle make a 2-simplex, four points
forming a filled tetrahedron make a 3-simplex, etc. gen-
eralized to the smallest solid shape with k+1 vertices in
k dimensions. In terms of graphs, a simplex is made of a
set of k+1 vertices building a complete graph where each
pair of vertices is connected by an edge. When selecting
a point xi ∈ S, its complement S/xi form a face of the
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FIG. 3. Left: a three dimensional simplicial complex con-
sisting of two tetrahedra (3-d simplices), two triangles (2-d
simplices) and thirteen connected points (0-d simplices). The
complex shows thirteen topological features (generators) of
the homology class H0 and two to H1. Right: a triangulated
sphere as an example of two-dimensional simplicial complex.

simplex and the union of the faces defines the boundary
of Sk, denoted by ∂kSk where ∂k is known as the bound-
ary operator. It is easy to visualize how a simplex could
be continuously deformed to a circle or a ball; indeed a
k-complex is homeomorphic to the k-ball Bk, while its
boundary is homeomorphic to the k-sphere[42].
A simplicial complex K is a set of simplices such as ev-
ery face of a simplex part of K is also in K and where
the intersection of any two simplices in K is either empty
or a simplex of dimension lower or equal to the highest
dimensional simplex they share. In other words, a 3-
dimensional simplicial complex is a set of simplices stuck
together to include at least one tetrahedron or possibly
more sharing faces or a vertex, but cannot contain any
4-dimensional simplex. Simplicial complexes are then a
tool for encoding a continuous topological space into a
combinatorial object (a graph), that can then be ana-
lyzed by linear algebra.
The construction of the complex for a given point cloud
is performed via a filtration process. Given a point cloud
of data, it is then possible to build a geometrical object
made of complexes, but these are not uniquely defined as
the rationale for which points to connect or not; it is still
arbitrary. Suppose the set of points Sk is part of a metric
space and choose a real number α ≥ 0. The Vietoris-Rips
complex α(Sk) is the set of simplices {x1, x2, ..., xk+1}
such that the Gromov-Hausdorff distance dX(xi, xj) ≤ α
for all pairs of points {xi, xj}. In other words, by build-
ing a closed ball of radius dX/2 around each point, the d-
simplices are built by connecting points where balls have
pairwise intersections. By continuously extending the ra-
dius of the balls from zero to a given cutoff value one ob-
tains a nested family of complexes known as a filtration
[43]. Other criteria are available for the filtration such
as the Čech complex, defined as the set of simplices such
that the closed balls have a non-empty intersection. For
both these definitions, it can be proven (nerve theorem)
that the simplices obtained from the filtration share the
same topological features of the underlying vector space
of points (i.e. they are homotopy equivalent) [44].

C. Simplicial Homology

Homology theory is a concept in algebraic topology
useful to study the topological properties of an object
such as the number of connected components, the num-
ber of holes, etc. by means of algebra and relating them
to Abelian groups. For any dimension k, the k-homology
group Hk is a vector space with dimension equal to the
number of k-dimensional holes. Therefore, given a point
cloud constituting a vector space, connected via a filtra-
tion to form simplicial complexes, the zero-dimensional
homology group H0 represents the connected components
of the complex, H1 represents the one-dimensional loops,
the H2 represents the two-dimensional holes, etc.
A k-chain ck is defined as the set of all k-simplices in K
and can be written as:

ck =

p∑
i=1

ϵixi ϵi ∈ Z2 (3)

all the elements ck form a group Ck(K), the chain group,
a vector space with coefficients in Z2 (set of integers mod-
ulo 2). It can be shown that the boundary of the chain
group is the k − 1 chain group ∂kCk(K) = Ck−1(K). In
other words, C0 is the group consisting of linear combina-
tion of the complex’s vertices (a zero-chain), C1 consists
of linear combination of the edges (1-chain), C2 of the
faces (2-chain), etc. In this framework, the boundary op-
erator is a homomorphism mapping Ck → Ck−1 and we
can define a cycle t as an element of Ck with zero bound-
ary t ∈ Ck : ∂k(t) = 0, i.e. the group Zk = ker ∂k ⊂ Ck

is the group of cycles, which are boundary-less. The
group obtained from the image of the boundary oper-
ator Bk = im∂k+1 consists instead of the boundaries of
simplicies of dimension k+1. This implies that repeated
application of the boundary operator eventually leads to
computing the boundary a one-dimensional chain (edge),
which is necessarily zero.

. . .
∂k+2−−−→ Ck+1

∂k+1−−−→ Ck
∂k−→ Ck−1 . . .

∂1−→ C0
∂0−→ 0 (4)

Note that for a k-dimensional simplicial complex Cn =
0,∀n > k. The homology group Hk is then defined as
the quotient between the group of cycle and boundary
groups of cycles

Hk(K) = Zk(K)/Bk+1(K) (5)

and identifies cycles in a cycle group by dividing them in
classes that differ by a boundary. An element in Hk is
known as a homology class.
At its core, the homology group a formal way to identify
the group of cycles that enclose a hole; whenever cycles do
not bound higher-dimensional simplices, we have a hole.
Holes are cycles that are not boundaries at the same time.
As an example, take a triangle which is the face of a filled
tetrahedron: this is a two-dimensional cycle that is also
the boundary of the three-dimensional simplex (H2= 0).
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FIG. 4. Sketch of the filtration process with the associated barcode diagram, showing the birth and death of topological
features. Around each of the eight points sample the manifold M Vietoris-Rips complexes are built from the intersection of
progressively expanding ball with radius ϵ (filtration parameter). Zero-dimensional components corresponding to the homology
class H0 are ’born’ at ϵ = 0 and ’die’ at the value at which a one dimensional H1 loop is born. The loop has a death value
when balls intersect each other to fill the loop to a disk.

An empty tetrahedron (or a triangulated 2-sphere) is in-
stead a two-dimensional simplicial complex, and in this
case the triangle encloses a hole (H2 = Z). Spaces with
the same homology group have the same amount of holes
(are homotopy equivalent) hence share the same topol-
ogy. When the point cloud is the sampling of a phase
space associated with a physical process, the hope (of-
ten justified by Niyogi-Smale-Weinberger theorem [45])
is that if X is a (slightly) noisy sample from a submani-
fold M ⊂ RN , the union of the balls around points of X
would have the same topology as the phase space. This
makes it possible to perform inference on the phase space
and, in turn, on the physical process.
The rank of the homology group is known as the Betti
number (βk) and ”counts” the number of k-dimensional
holes of a space: β0 represents connected components,
β1 circles, β2 voids, etc. As an example, for a two di-
mensional circle the set of Betti numbers {β0, β1, β2}
are {1, 1, 0}, for a filled disk {1, 0, 0}, a hollow sphere
{1, 0, 1}, for a filled ball {1, 0, 0}, for a torus {1, 2, 1},
etc.

D. Persistent Homology

Persistent homology is a technique used to show the
evolution of the homology of a point cloud through a fil-
tration. As the filtration parameter grows, the points
get connected to form a nested sequence of Vietoris-Rips
complexes, each of them having a corresponding homol-
ogy class for each dimension.

K1 ⊆ K2 ⊆ · · · ⊆ Kn ⇒

Hk(K1),Hk(K2), . . . ,Hk(Kn)
(6)

Along the filtration, loops and holes form only at given
filtration parameters, and merge to larger structures fur-
ther along the process. In this context a homology class
is said to be born at the point b if it is not part of the map
Hk(Kb−1) → Hk(Kb), and it is said to die at the point d
if it is found in the map Hk(Kd), but not in Hk(Kd+1). In
this way, each homology class has associated a birth and
a death, {b, d} ∈ R2, that can be represented in the so-
called persistence diagram, showing the persistence (de-
fined as d− b ) for classes in each dimension. Persistence
diagrams are then defined only above the diagonal axis
as b > d, and the further a point in the diagram is from
the diagonal, the more persistent is the topological fea-
ture along the filtration. Low persistence points are then
associated with short-lived holes, i.e. noise.
Point clouds and persistence diagram from homology
classes of dimension k = {0, 1} for both a white noise
time series and a cos(t) signal are shown in Figure 5.
Zero-dimensional homology classes, H0, correspond to
connected components, that are therefore born at the
beginning of the filtration and cluster at the edge of the
diagram. One-dimensional classes, H1 represent loops
(one-dimensional holes), and have a very low persistence
for the noise sample, as the point cloud does not con-
tain any real loops. For the trigonometric signal, it can
be shown (see Appendix A) that the embedding of a pe-
riodic signal produces ellipses in the point cloud. The
loop size depends on the scale of the signal, therefore,
high-persistence H1 homology classes are expected when
analyzing time series with periodic or quasi-periodic com-
ponents.
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FIG. 5. Top: point cloud from Takens embedding of a white
noise time series with standard deviation σ = 0.5 (left) and
its corresponding persistent diagram based on Vietoris-Rips
complexes (right). Bottom: same for the time series cos(t).
Colors in the point clouds represent the starting time for them
embedding of each point. Note the one-dimensional loop re-
sulting from the embedding of cos(t) is a generator of the
corresponding high persistence H1 point in the diagram, while
noise gives rise to points with low persistence, clustering close
to the diagonal.

III. COMPUTATIONAL TOOLS AND DATA
SETS

Embeddings and topological data analysis and per-
sistent homology in this work were computed with the
packages Giotto-TDA [46] and Scikit-TDA [47], while
machine learning classification were performed with the
Scikit-Learn library [48]. In order to visualize high-
dimensional point clouds, the set of points is then pro-
cessed by principal component analysis (PCA) and only
the three highest contributions are displayed.
The data set considered in this study consists of two main
sources. The condition monitoring study used two time
series consisting of four days of continuous data measured
at a 10 s resolutions (34560 data points), collected for a
subsea oil and gas production asset in the North Sea por-
tion of the Norwegian continental shelf. The data consist
of: downhole pressure, downhole temperature and flow-
line pressure measured for a single producing well. The
data set has been anonymized.
The data set used for the machine learning automatic
classification of slugging events was taken from a public
repository known as 3W data set: a combination of more
than 2000 multi-variate time series, either real or sim-
ulated with the OLGA software [49], of undesired rare
well events collected from 21 wells operated by Petrobras

offshore Brazil between 2012 and 2019 [50]. This work
utilizes only the 3W time series labeled as ”normal”, ”se-
vere slugging” and ”flow instabilities” (1040 total time
series), consisting of downhole pressure (P-PDG), well-
head temperature (T-TPT) and wellhead pressure (P-
TPT), available at a 1 s resolution. Severe slugging is
typically classified in type 1, type 2 and type 3, depend-
ing on ratio between the liquid slug length and the riser
length [9]. However the 3W dataset does not differenti-
ates between these three regimes, labelling the data as (a)
normal, with steady stable flow, (b) flow instabilities, in
which at least one of the monitored variables undergoes
relevant oscillations but with tolerable amplitudes, and
(c) severe slugging, a critical type of instability with well-
defined periodicity (around 30, 45, or 60 min) and ampli-
tudes sufficiently high to be detected by sensors along the
entire production line. Albeit TDA likely to classify type
1, 2 and 3 severe slugging, these should be verified using
a dedicated and balanced data set: therefore this work
will follow the simplified 3W classification. Behavior la-
beled as ”flow instabilities” is intended in 3W as minor
slugging events in which the multiphase flow shows jit-
tering pressure oscillations with amplitude below 1 bar
and frequency is in the order of seconds or few minutes,
in contrast to severe slugging in with oscillations of sev-
eral bars and frequency of tens of minutes. The 3W time
series was pre-processed to remove time series with pres-
sure differences between the initial and final 30 minutes
average value higher than 5 bar, to remove transient flow
situations. In addition, signals were down-sampled to re-
strict the analysis to less than 3000 points, in order to
keep the computational cost to a manageable level. No
outlier or individual point was removed from the sensors’
signal.

IV. TOPOLOGICAL INDICATORS

The shape of data can be inferred from the persistence
diagram (D) and represented by a series of topological
indicators. Each of the points in the diagram is defined
by its birth (b) and death (d) coordinate. A measure of
the complexity and size of the topological features of Hk

is the p-norm, defined as:

PHk
p (DHk

) =

 ∑
{b,d}∈D

|d− b|p
1/p

(7)

In particular, the infinity norm PHk
∞ measures the largest

lifetime (persistence) of a given feature. This is a useful
indicators as noise gives rise to points in D with short
lifetime, while relevant features of the points cloud (e.g.
loops) are expected to have high persistence.
Another measure of complexity is the persistence entropy
[51, 52], EHk

(D), a measure of the distribution of points
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along the diagram based on Shannon’s entropy formula.

EHk
(D) = − 1

log2 S(D)

∑
{b,d}∈DHk

|d− b|
S(D)

log2

(
|d− b|
S(D)

)

where

S(DHk
) =

∑
{b,d}∈D

|d− b| (8)

Another typical topological indicator are Betti curves
(βk), which count the amount of k-dimensional topolog-
ical features (i.e. the Betti number [53]) at each value of
the filtration parameter ϵ. More formally, βk(ϵ): R → N
whose values on ϵ ∈ R is the number of points (bi, di) ∈ D
such as bi ≤ ϵ < di. In formulae, for a given filtration
parameter

βk(ϵ) =
∑

(b,d)∈D

w(b, d)1ϵ∈D (9)

where w(b, d) is a uniform weight and 1 the indicator
function [54]. Roughly speaking this is akin to a
Lebesgue integral for the persistence diagram. The value
of Betti curve is therefore a measure of the density of
points in the persistence diagram, with domain extend-
ing to the value of the point with highest persistence for
a given dimension k. The βk values are therefore depen-
dent on the amount of points in a diagram and, in turn,
on the signal length and the embedding parameters. It
then follows that while it is not possible to compare
Betti curves obtained from different embeddings, it is
still possible to see how the Betti curve for slug flow
extends to much higher filtration parameters, implying
a more sparse persistence diagram.

V. STATE CHANGE IDENTIFICATION VIA
TOPOLOGICAL INDICATORS

A single severe slugging event in a vertical riser sys-
tem was studied by means of topological data analysis.
The following analysis was applied to the bottom hole
pressure signal, but the same procedure applied to other
available sensor data (flowline pressure and flowline tem-
perature) produced the same qualitative results. Steady-
state flow at a pressure of 164 bar transitioned to a severe
slugging flow regime, showing pressure oscillations with a
period of approximately 12 minutes, amplitude of about
6 bar which lasted for about 1.5 hours before decaying
back to steady-state flow (Fig.6.a).
Takens embedding was applied to the signal on a time
window of 4500 s in both steady-state and slug flow to
identify the main topological features in each flow regime.
The embedding of steady-state flow (d=6, τ=9) produced
a point cloud close to spherical in shape and with a radius
of about 0.2 (Fig.6.b). Albeit presenting some structure,
this pattern is similar to that of white noise as shown in

TABLE I. Topological indicators for white noise generated
with σ=0.5, steady-state flow and severe slug flow from the
signal shown in Figure 6a.

Noise Normal Flow Slug Flow
P∞(H0) 1.06 0.15 0.20
P∞(H1) 0.29 0.19 7.09

EH0 1.11 1.45 1.39
EH1 1.59 1.83 1.05

Figure 2 and the associated persistence diagram shows
points clustered mostly near the birth-death diagonal.
The embedding of the slug flow portion of the time series
(d=11, τ=14) shows instead clear periodic orbits with a
gyration radius about one order of magnitude larger that
in the previous case. Loops are indeed expected as they
are a signature of periodicity in the signal, typical of the
cases of severe slugging. The persistent diagram for slug-
ging shows high persistence points for the homology class
H1, corresponding to one-dimensional loops and some de-
gree of residual noise.
Betti curves are shown in Figure 6.g and f. The number
of points in the two diagrams is different, therefore the
Betti curves have different magnitudes, but it is appar-
ent that steady-state flow shows some overlap between
β0 and β1, while they are spread over a much larger do-
main.

In order to find suitable classifiers for the different
flow regimes, some topological indicators were computed
for the two flow regimes and are summarized in Table
I. When considering the maximum persistence P∞ for
each dimension, H1 components show a higher persis-
tence. For slugging flow, while H0 components show only
a marginal increase in persistence, H1 components show
much larger value than in steady-state flow, due to the
appearance of loops originated from the periodic pressure
oscillations. Such patterns also have an effect on the per-
sistence entropy of each diagram. Slug flow shows lower
entropy for both H0 and H1 indicating a high degree of
information.
It is then natural to test persistence entropy, the maxi-
mum persistence and Betti curves along the whole con-
tinuous signal, as indicators for identifying and monitor-
ing the state change of the flow conditions in the well
from steady-state to slug flow and vice versa. Imagining
a system in which sensor data is accumulated continu-
ously it would then be possible to apply repeatedly at
time t0 topological data analysis to a time-window of
size n, (t−n; t0), shifting this time window ahead in time
every time a new signal data is received from the sen-
sor. Whereas this shift is larger than one time-step, this
is known as stride (δ) and it acts as a delay between
successive time windows analysis, allowing for the time
of running the analysis and storing the results. Each of
these time windows is then analyzed by applying repeat-
edly Takens embedding and generating a point cloud and
generating persistence diagrams as described in Section
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FIG. 6. a: time series for the bottom hole pressure (BHP) along the approximately 1.5 hours long slugging flow event. b-c:
point cloud for steady-state flow (b, ca. at time h.00:30) and for slug flow (c, ca. at time h.02:00), d-e: persistence diagram for
steady-state flow (d), and for slug flow (e). Betti number curves for steady-state flow (f) and slug flow (g).

II.
The time series in Figure 6.a was then analyzed by sam-
pling a sliding time window of 8000 s, slightly larger than
the expected slugging event. Instead of optimizing the
embedding parameters following the heuristics of Section
II, parameters were kept fixed along the whole time series
analysis to allow for a better comparison between persis-
tence diagrams and Betti curves taken at different times
along the signal time series. The embedding parameters
are d = 8, τ = 42, δ = 200 s, giving rise to a series of 96
persistence diagrams across 7 hours of sensor data. Fol-
lowing this approach the first 17 time windows include
steady-state flow only, windows 41-60 include slug flow
and windows 18-40 and 61-80 include a transient flow
regime where one regime transitions to the other.
Results are shown in Figure 7. The maximum persistence
of diagrams for both the homology dimensions (Fig.7.a)
show an initial stable value corresponding to steady-state
flow, then developing a peak right at the transition with
a maximum around the middle of the analyzed interval
where they fall back to steady-state values. This behav-
ior is in agreement with the values in Table I, where the
maximum persistence increases when transitioning from
regular to slug flow conditions. Looking at Betti curves,
it is convenient displaying the mean of the values ⟨βk⟩
after normalizing over the filtration parameters as this
is a measure of how many topological features are found
in each persistence diagram, and it is shown in Figure
7.c,d. Both ⟨β0⟩ and ⟨β1⟩ are symmetric and clearly de-
viate from the steady-state value at the beginning of the
transient conditions, similarly for P∞.
Normalized persistence entropies show a decrease to a
plateau in correspondence with the slug flow pattern. For

FIG. 7. Topological indicators computed at progressive slid-
ing time windows. a: Maximum persistence, P∞, b: nor-
malized persistence entropy EHk , c and d: mean of the Betti
curves ⟨βk⟩. Results for homology class H0 (blue line) and
H1 (red line). The shaded area shows the time windows that
include, even partially, signal with oscillations due to severe
slugging.

the H0 class the transition is sharp, while for H1 entropy
initially increases to a peak at the transition points be-
fore to fall to values similar to those of EH0

(Fig.7b).
All the topological indicators above could be used for the
the identification of slug flow by introducing, for exam-
ple, simple thresholds systems, but none of them is an
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actual distance function between persistence diagrams.
As a further topological condition indicator we introduce
the 2-Wasserstein distance [55], defined as:

WHk
q (X,Y ) =

[
inf

η:X→Y

∑
x∈X

||x− η(x)| |q∞

]1/q

, q = 2

where and ||(x, y)||∞ is the L∞-norm, and η is the set
of all bijections (pairs of points) between the two per-
sistence diagrams X and Y . Figure 8 shows the matrix
graphical representation of the distance between the i-
th and j-th persistence diagrams, produced from time
snapshots (time windows) of the pressure signal taken at
progressively increasing time.
First of all, the matrices in the figure show that persis-
tence diagrams for the time series are stable, i.e. small
shifts in the signal, produce small changes in the Wasser-
stein distance between diagrams [56]. This is an im-
portant property when comparing persistence diagrams,
guaranteeing that flow regimes with radically different
signals would lay at large W2 distance from each other.
While the matrix of distances between diagrams for H0

look very symmetric, those for H1 are not. Curiously, the
H0 persistence for time windows at the beginning and the
end of the slugging event are very close in W2 distance, as
shown by the presence of two minima spanning diagonals
of the plot, albeit the shape of the signal is not symmet-
ric in time. The H1 persistence is instead less symmetric
but still clearly shows a large distance between diagrams
corresponding to steady-state flow and slug flow. This
demonstrates that the 2-Wasserstein distance can also
be used as an effective indicator for identifying slug flow
by simply setting a threshold on the maximum distance
between diagrams taken a different times along a signal
as long as the diagram for steady-state flow (normal con-
ditions) is correctly identified. Other metrics such as the
bottleneck distance [55], and the 2-norm of persistence
landscapes [57] were also tested and found to produce
similar results but with larger degrees of noise.

VI. MACHINE LEARNING CLASSIFICATION
OF FLOW REGIMES VIA TOPOLOGICAL

INDICATORS

The aim of this section is to automatically classify sec-
tions of sensor time series corresponding to severe slug-
ging flow behavior on a system with multiple oil and gas
wells. For this purpose the wellhead pressure time series
from the 3W data set were analyzed. These data were
found to be the most reliable after removing faulty sen-
sor data. The same analysis performed on other sensors’
data such as bottom hole pressure and flowline tempera-
ture was found to give the same qualitative results.
At first, the data were analyzed to confirm that the

same conclusions drawn in Section V hold true for the
3W data set as well. Takens embedding and persistence
diagrams were computed for prototypical cases of each of

FIG. 8. Wasserstein distance between persistence diagrams
from different time windows across the signal. a: WH0

2 (i, j),

b: WH1
2 (i, j), c: black line: WH0

2 (1, j), distance between time
window #1 (steady-state flow) and other windows. Red line:

WH0
2 (32, j) distance between transient flow and other win-

dows. Blue line WH0
2 (48, j) distance between slug flow and

other windows. d: same as b but for WH1
2 (i, j). The shaded

area shows the time windows that include, even partially, slug
flow oscillations.

the three flow regime labels: normal flow, flow instabili-
ties and severe slugging. Flow instabilities are considered
to be flow fluctuations of moderate amplitude, not lead-
ing to a spontaneous blowdown as for severe slugging [50].
Takens embedding was applied to a time window of 3000
s at the optimal dimension and time delay parameters.
Results are shown in Figure 9.
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FIG. 9. Topological data analysis for time series from the 3W
data set. Time series of signal for wellhead pressure (WHP),
point clouds from Takens embedding and persistence diagram
for, from top to bottom: normal operation flow (d=6, τ=36
s), minor flow instabilities (d=11, τ=129 s), severe slugging
flow (d=12, τ=90 s).

As for the state change case, the embedding of normal
steady-state flow produces a point cloud close to spheri-
cal in shape and with a radius of about 0.2 (Fig.9) deter-
mined by the noise’s amplitude mostly clustered at the
birth-death diagonal.
For flow instabilities, the time series shows oscillations of
about 0.5 bar but not a clear periodic signature. The em-

FIG. 10. Confusion matrices for classification of flow regimes
based on topological indicators EHk , P∞(Hk), ⟨βk⟩ for k ∈
{0, 1}. a: logistic regression classifier. b: Random forest
classifier

bedding produced an interesting toroidal pattern and the
persistence diagram shows a cluster for H1 but no high
persistence points. The case of severe slugging is rad-
ically different, as the pressure signal shows oscillation
with amplitude of about 2 bar and a period of about 10
minutes. The embedding shows instead periodic orbits
with limited amount of noise, resulting in a H1 point at
very high persistence.
Machine learning classification of the flow regimes can be
performed with the following different approaches. One
is to label time series using a supervised learning classi-
fier algorithm on the ensemble of the eight scalar-valued
topological indicators, which proved useful for the state
change detection of Section V (persistence entropy, nor-
malized persistence entropy, maximum persistence, av-
erage of the Betti curve, each for H0 and H1 homology
classes). These indicators were obtained from process-
ing the persistence diagram and should capture enough
information about the shape of the embedded signals to
classify them correctly. For the classification a 65-35%
train-test split was used. For the optimization of flow ef-
ficiency, a correct identification of severe slugging is cru-
cial. We therefore consider methods that label slugging
cases as normal operations or unstable flow as more se-
vere failure than the opposite case.
Results for multi-modal logistic classifier on the indica-
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TABLE II. Relative feature importance for the random forest
classifier applied on identifying slug flow and unstable flow
from topological indicators on the 3W data set.

Feature Relative Importance
⟨β0⟩ 0.302

P∞(H1) 0.274
P∞(H0) 0.158

EH0 0.153
EH1 0.075
⟨β1⟩ 0.040

tors listed above are shown in the confusion matrices in
Figure 10. Logistic regression without any penalty term
manages to classify flow regimes with an accuracy score
of 92.9% (recall: 92.0%, precision: 93.6%, F1: 92.7%),
but still labels 11% of the severe slugging cases as unsta-
ble flow and 13% of unstable flow time cases as normal
operations (Figure 10.a). The inverse of the regulariza-
tion strength parameter C was optimized (Cmax=0.01
and Cmin=100) to maximize the classification accuracy.
Regularization terms L1 and L2 were found to have little
to no effect on the classification accuracy.
Moving to a different classification algorithm, a random
forest classifier dramatically improves the results (accu-
racy 99.2%, recall: 99.2%, precision: 99.5%, F1: 99.4%,
Figure 10.b). All severe slugging events were classified
correctly and the only error being 3% of flow instabilities
labeled as normal operations. This is somewhat expected
as unstable flow conditions are not well defined, therefore
their boundary with normal operating conditions, espe-
cially in transient conditions, can be subjective. Feature
importance for the Gini-classifier is based on the mean
decrease in feature impurity [58], is shown in Table II.
Another approach is to classify directly an encoding

of the whole persistence diagram. Persistence images
[59] are built by adding a Gaussian at each point in a
persistence diagram and replacing the death coordinate
with the persistence (death-birth). Persistent images for
one severe slugging time series are shown in Figure 11.a
and 11.b for H0 and H1 respectively. The images from
each homology dimension are then added to form a sin-
gle image and then classified with logistic regression and
random forest algorithms. The results for the two ap-
proaches are identical and shown in Figure 11.c (accu-
racy 99.5%, recall: 99.5%, precision: 99.7%, F1: 99.6%).
Classification of the images performed generally better
than that of the topological indicators as all severe slug-
ging events were classified correctly and fewer unstable
flow conditions were wrongly assigned to normal condi-
tion. By looking at the coefficients of the logistic classifier
for the severe slugging label (Fig.11.d), it is possible to
notice that the areas of the images with a larger weight
in the classification are those with low or zero-birth time,
i.e. points corresponding to the homology class H0. This
is in agreement with the feature importance in Table II
where the highest importance features all belonged to the

H0 class.

VII. SUMMARY AND CONCLUSIONS

Topological data analysis is a useful tool to extract in-
formation from complex data sets by inferring the shape
of data in a high-dimensional embedded space. In partic-
ular, TDA proved to be effective in identifying periodic
patterns in data as these appear as holes and loops in
the embedding space. Typically in chemical engineer-
ing periodic patterns in sensor data are associated with
slug flow, where large gas bubbles induced by the piping
height profile move in the fluid phase inducing regular
spikes in pressure. Severe slugging events in multiphase
flow are a major problem in chemical engineering as they
are a hallmark of inefficient mass and momentum trans-
port but may also lead to damage to the plant equipment.
Sensor data from offshore oil and gas wells was analyzed
with TDA in a data pipeline consisting in Takens em-
bedding followed by persistent homology. Persistence di-
agrams were processed to produce persistence images and
to extract topological indicators. Such indicators show a
stable value when the pressure is at steady-state and have
a clear transition in correspondence with the onset of slug
flow. As well, when introducing a proper concept of dis-
tance between persistence diagrams the two dynamical
states, these appear clearly separated and distinct. The
distance and topological indicators can then be used for
the identification of dynamic state change (steady-state
- severe slugging) by setting up a simple threshold-alert
system.
Machine learning-based automatic classification of flow
regimes was performed on a large, public data set of un-
desired well events known as the 3W data set. From
the 3W set, pressure time series labeled as either ”nor-
mal operation”, ”flow instabilities”, and ”severe slug-
ging” were classified with high accuracy classification by
means of simple linear classifiers such as logistic regres-
sion and random forest algorithms. The results of the
classification based on a limited number of topological
indicators such as persistence entropy, maximum persis-
tence and Betti curves, were found dependent on the al-
gorithm, while classification based on persistence images
were found more accurate and method independent.
The results above suggest that condition monitoring and
dynamics state change tasks to identify severe slugging
could be performed efficiently on industrial assets by em-
ploying TDA-based methods. A public repository with
the code used in this work can be found in reference [60].

ACKNOWLEDGMENTS

The work presented in this paper is associated with the
center SFI NorwAI, where Cognite AS is one of the fund-
ing partners. The center is partly funded by the Research
Council of Norway, within the Centers for Research-based



12
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Appendix A: Analysis of periodic signals

In order to show how a signal containing a periodic
or quasi-periodic component is characterized in topolog-
ical data analysis, we follow the approach of Perea and
Harer [38], assuming a generic (noiseless) signal can be
represented by a trigonometric function. For example,
defining the dimension of the embedding d and the time
delay τ , one could embed an infinite periodic signal in R
such as f(t) = cos(nt), n ∈ N to Rd+1 by constructing
the vector

Fd,τ (f(t)) =


cos(nt)

cos(n(t+ τ))
...

cos(n(t+ dτ))

 =


cos(nt)

cos(nt+ nτ)
...

cos(nt+ dnτ)



= cos(nt)


1

cos(nτ)
...

cos(dnτ)

− sin(nt)


0

sin(nτ)
...

sin(dnτ)


= cos(nt)u+ sin(nt)v

(A1)
Note that the choice of d and τ implies the definition
of a time window of size (t0, t0 + dτ) that is sampled
d times every τ time steps. Repeated applications of
such embedding to a collection of progressively increas-
ing times Fd,τ (f(t)) at t0, t0+∆, . . . , t0+M∆ produce M
vectors, hence a cloud of M points in Rd+1.
The embedded signal Fd,τ (f(t)) describes a point in the
sliding window point cloud. The equation A1 describes
an ellipse in span(u,v) as long as the vectors u and v are
linearly independent. The minor and major axes length
is corresponding to the square roots of the two eigenval-
ues λ± of the matrix A [38]:

A =

(
||u||2 −u ∗ v
−v ∗ u ||v||2

)
(A2)

λ± =
(d+ 1)±

√
sin(n(d+1)τ)

sin(nτ)

2
(A3)

and that the ellipse turns into a circle whenever the mi-
nor axis is maximised, i.e. whenever the time window
satisfies the following condition [38]:

dτ =

(
d

d+ 1

)
2π

n
(A4)

i.e. whenever the window size is a multiple of the fre-
quency of the time series periodicity. By scaling the orig-
inal time series to fscaled(t) = K cos(nt) while keeping
constant the embedding parameters, such as when for
changing units of measures of the signal, it follows that
the A matrix and its eigenvalues gets scaled accordingly

by a factor K2. The distance between each point in the
Rd+1 cloud is then scaled, preserving the shape of the
point cloud’s topology. The same holds for offsetting the
time series to a different mean value, f(t) = cos(nt) + η.
Instead, by increasing the values of the oscillation fre-
quency n, the difference between the two eigenvalues in
eq.A3 increases its linear eccentricity. This also implies
that for periodic signals with increasing oscillation fre-
quency n (at constant window size) the ellipse cloud-
shape roundness is expected to change. Therefore for the
Takens embedding, the topology of the embedded data is
invariant under scaling and shifting the time series, but
not under changes in frequency.
The effect of the periodic signal on the overall shape of
the point cloud is less straightforward but can be deduced
by representing the signal by a Fourier series. This is
reasonable for smooth signals as integrable functions are
guaranteed to have vanishing Fourier coefficients by the
Riemann-Lebesgue lemma. In this case it can be proven
that for signals f(t) where ||f(t)||2=1 and∫

f(t)dt = 0, f(t) = f

(
2πt

n

)
∀n ∈ N (A5)

the sliding window approach produces an elliptic point
cloud, similarly to Eq.A1 with maximum roundness as in
Eq.A4 [38].
In case of more complex patterns in the time series, such
as for commensurate combination of trigonometric func-
tions such as f(t) = cos(nt) + cos(mt), n/m ∈ Q, the
embedding gives rise to a ”wavy” ellipse, with oscilla-
tions on dimensions perpendicular to the ellipse’s plane.
For quasi-periodic time series (where the ratio n/m is
irrational) it can instead be shown the the embedding
gives rise under specific conditions to to a hyper-torus
[37] (see Figure 2).
The arguments above show that the choice of the em-
bedding parameters do influence the shape of the point
cloud, and therefore these could be tuned to optimize the
sensitivity of the data analysis when e.g. the target is to
identify periodic components in a signal such as for se-
vere slugging in multiphase flow. In this case while the
periodicity of the slugging signal is typically not known
a priori, its known that its order of magnitude is in the
range of several minutes and this would allow to ”filter”
out from the analysis periodic components in the signal
occurring on a much shorter time scale such as minor hy-
drodynamic slugging and other flow instabilities.
It is also worth mentioning that both Nyquist and Tak-
ens theorems set a fundamental limit for reproducing the
information contained in the time series, where as the em-
bedding dimension should be chosen to be at least twice
as large as the largest signal frequency [38].
We note here that traditional approaches based on
Fourier transform (FT) methods have proven to be very
efficient in detecting severe slugging. The main advan-
tage of topological methods over FT methods lays in the
embedding procedure, which requires in principle only
one oscillation period in order to produce a loop, i.e. a
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point in the persistence diagram, while the height and
sharpness of frequency peaks in FT methods is depen-

dent on the ratio between the sampling rate and the wave
length.
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